Terminology
The following terms, symbols, and decorators are used in text and diagrams throughout this guide.
Notation
- Bold face variables indicate vectors or matrices and non-bold face variables represent scalars.
- The default frame for each variable is the local frame: $\ell{}$. Right superscripts represent the coordinate frame. If no right superscript is present, then the default frame $\ell{}$ is assumed. An exception is given by Rotation Matrices, where the lower right subscripts indicates the current frame and the right superscripts the target frame.
- Variables and subscripts can share the same letter, but they always have different meaning.
Acronyms
| Acronym | Expansion | | ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | AOA | Angle Of Attack. Also named alpha. | | AOS | Angle Of Sideslip. Also named beta. | | FRD | Coordinate system where the X-axis is pointing towards the Front of the vehicle, the Y-axis is pointing Right and the Z-axis is pointing Down, completing the right-hand rule. | | FW | Fixed-wing (planes). | | MC | MultiCopter. | | MPC or MCPC | MultiCopter Position Controller. MPC is also used for Model Predictive Control. | | NED | Coordinate system where the X-axis is pointing towards the true North, the Y-axis is pointing East and the Z-axis is pointing Down, completing the right-hand rule. | | PID | Controller with Proportional, Integral and Derivative actions. |
Symbols
| Variable | Description |
| --------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| $x,y,z$ | Translation along coordinate axis x,y and z respectively. |
| $\boldsymbol{\mathrm{r}}$ | Position vector: $\boldsymbol{\mathrm{r}} = [x \quad y \quad z]^{T}$ |
| $\boldsymbol{\mathrm{v}}$ | Velocity vector: $\boldsymbol{\mathrm{v}} = \boldsymbol{\mathrm{\dot{r}}}$ |
| $\boldsymbol{\mathrm{a}}$ | Acceleration vector: $\boldsymbol{\mathrm{a}} = \boldsymbol{\mathrm{\dot{v}}} = \boldsymbol{\mathrm{\ddot{r}}}$ |
| $\alpha$ | Angle of attack (AOA). |
| $b$ | Wing span (from tip to tip). |
| $S$ | Wing area. |
| $AR$ | Aspect ratio: $AR = b^2/S$ |
| $\beta$ | Angle of sideslip (AOS). |
| $c$ | Wing chord length. |
| $\delta$ | Aerodynamic control surface angular deflection. A positive deflection generates a negative moment. |
| $\phi,\theta,\psi$ | Euler angles roll (=Bank), pitch and yaw (=Heading). |
| $\Psi$ | Attitude vector: $\Psi = [\phi \quad \theta \quad \psi]^T$ |
| $X,Y,Z$ | Forces along coordinate axis x,y and z. |
| $\boldsymbol{\mathrm{F}}$ | Force vector: $\boldsymbol{\mathrm{F}}= [X \quad Y \quad Z]^T$ |
| $D$ | Drag force. |
| $C$ | Cross-wind force. |
| $L$ | Lift force. |
| $g$ | Gravity. |
| $l,m,n$ | Moments around coordinate axis x,y and z. |
| $\boldsymbol{\mathrm{M}}$ | Moment vector $\boldsymbol{\mathrm{M}} = [l \quad m \quad n]^T$ |
| $M$ | Mach number. Can be neglected for scale aircraft. |
| $\boldsymbol{\mathrm{q}}$ | Vector part of Quaternion. |
| $\boldsymbol{\mathrm{\tilde{q}}}$ | Hamiltonian attitude quaternion (see 1
below) |
| $\boldsymbol{\mathrm{R}}\ell^b$ | Rotation matrix. Rotates a vector from frame $\ell{}$ to frame $b{}$. $\boldsymbol{\mathrm{v}}^b = \boldsymbol{\mathrm{R}}\ell^b \boldsymbol{\mathrm{v}}^\ell$ |
| $\Lambda$ | Leading-edge sweep angle. |
| $\lambda$ | Taper ratio: $\lambda = c_{tip}/c_{root}$ |
| $w$ | Wind velocity. |
| $p,q,r$ | Angular rates around body axis x,y and z. |
| $\boldsymbol{\omega}^b$ | Angular rate vector in body frame: $\boldsymbol{\omega}^b = [p \quad q \quad r]^T$ |
| $\boldsymbol{\mathrm{x}}$ | General state vector. |
1
Hamiltonian attitude quaternion. $\boldsymbol{\mathrm{\tilde{q}}} = (q_0, q_1, q_2, q_3) = (q_0, \boldsymbol{\mathrm{q}})$.
$\boldsymbol{\mathrm{\tilde{q}}}{}$ describes the attitude relative to the local frame $\ell{}$. To represent a vector in local frame given a vector in body frame, the following operation can be used: $\boldsymbol{\mathrm{\tilde{v}}}^\ell = \boldsymbol{\mathrm{\tilde{q}}} \, \boldsymbol{\mathrm{\tilde{v}}}^b \, \boldsymbol{\mathrm{\tilde{q}}}^{}$ (or $\boldsymbol{\mathrm{\tilde{q}}}^{-1}{}$ instead of $\boldsymbol{\mathrm{\tilde{q}}}^{}$ if $\boldsymbol{\mathrm{\tilde{q}}}{}$ is not unitary). $\boldsymbol{\mathrm{\tilde{v}}}{}$ represents a quaternionized vector: $\boldsymbol{\mathrm{\tilde{v}}} = (0,\boldsymbol{\mathrm{v}})$
Subscripts / Indices
| Subscripts / Indices | Description | | -------------------- | ---------------------------------------------------------------- | | $a$ | Aileron. | | $e$ | Elevator. | | $r$ | Rudder. | | $Aero$ | Aerodynamic. | | $T$ | Thrust force. | | $w$ | Relative airspeed. | | $x,y,z$ | Component of vector along coordinate axis x, y and z. | | $N,E,D$ | Component of vector along global north, east and down direction. |
Superscripts / Indices
| Superscripts / Indices | Description | | ---------------------- | ----------------------------------------------- | | $\ell$ | Local-frame. Default for PX4 related variables. | | $b$ | Body-frame. | | $w$ | Wind-frame. |
Decorators
| Decorator | Description | | ------------ | ------------------ | | $()^*$ | Complex conjugate. | | $\dot{()}$ | Time derivative. | | $\hat{()}$ | Estimate. | | $\bar{()}$ | Mean. | | $()^{-1}$ | Matrix inverse. | | $()^T$ | Matrix transpose. | | $\tilde{()}$ | Quaternion. |
Comments
0 comments
Please sign in to leave a comment.